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Using the Dirac-Hartree-Fock (DHF) program which includes the exchange terms for electro-
static interactions, the Dirac equation was solved numerically by UNIVAC computer for all elements
with Z =1—120. A solution was performed for each element of the periodic system in several electronic
configurations, to obtain the configuration with lowest total energy as the calculated ground state.

Mit Hilfe des Dirac-Hartree-Fock-(DHF)-Programms, das dic Austauschterme fiir elektro-
statische Wechselwirkungen einschlieBt, wurde die Dirac-Gleichung fiir alle Elemente mit Z=1-120
numerisch (UNIVAC-Rechenanlage) gelost. Die Rechnung wurde fiir jedes Element des Perioden-
systems in verschiedenen Elektronenkonfigurationen durchgefiihrt, um die Konfiguration mit der
tiefsten Gesamtenergie fiir den Grundzustand zu erhalten.

En utilisant un programme Dirac-Hartree-Fock (DHF) comportant les termes d’échange de
interaction électrostatique, 'équation Dirac a été résolue numériquement avec un ordinateur
UNIVAC, pour tous les éléments de Z =1 4 120. Les calculs ont été developpés pour plusieurs con-
figurations électroniques de chacun des éléments de la classification périodique afin de déterminer
celle dont I’énergie est la plus basse, qui correspond a I’état fondamental.

1. Introduction

During the last decade seceral complete self-consistent Hartree or Hart-
ree-Fock calculations were performed of ground states and eigenvalues of all
elements in the periodic system. First, non-relativistic calculations in one
(NRHFES) [1] or several electron configurations (NRH) [2] were done and then
non-relativistic Hartree-Fock (NRHF) calculations [3 and 4] (in one configu-
ration for each Z) or approximative (NRHF) calculations using the wave func-
tion from NRH calculations [2] were performed in several electron configurations
for each element. However, all NRH or NRHF results neglected relativistic
effects and gave very inaccurate values of eigenvalues and total energies for all
heavier atoms.

The only systematic relativistic calculations, which use Slater approximation
for the exchange potential (Dirac-Fock-Slater-DFS), were performed for all
elements from Z =2 — 101 in one accepted electron configuration [5— 7]. These
calculations were recently extended in the heavy elements region in several
electron configurations (for Z = 104—132), using the non-modified Slater ex-
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change potential [8], or very recently for the region Z =289 — 172, using 2/3
of the usual Slater exchange potential [9] as the exchange term in the Dirac
equation.

More exact than DFS, the relativistic Hartree-Fock solution of the Dirac
equation (Dirac-Hartree-Fock-DHF) including the exact form of the exchange
terms as formulated by Grant [10— 12], was rarely performed and then only
for a few atoms [13 — 16]. Recently, DHF calculations have been extended for
a few elements through the entire periodic system [17, 18] and thoroughly in
several configurations for 118 —131 elements [19]. No systematic calculations
(DHF) of ground states of all elements in the periodic system, in reveral confi-
gurations for each element, was yet published. The aim of this work was to per-
form such calculations in the region from Z =1 - 120, with the intent of testing
the DHF method in the known region of the periodic system. Such results should
be valuable for future calculations of ionization potentials in less known regions
{as e.g. in actinide and lanthanide series) or in the unknown region, around
110—114 elements [20], where some very stable isotopes are predicted to exist
and could, perhaps, be found in nature.

2. Method of Calculation
2.1. Formulae Used in Calculations

In our calculations we used the formulae derived by Swirles [21] and Grant
[10—12]. Following Grant’s notation in [10] we used the following schema
(denoting index k of Grant as j): Dirac-Hamiltonian Hy for many-electron
atoms (in central field approximation) was defined in atomic units as:

Hy=Y ks +3Y o) &)
j jl

with Dirac-Hamiltonian for a single electron having number j present in the
atom as:

hy=(ica()V 5= B()c* — Vry] . 2
Here in (1) term 3 Z g(jl) is the exchange term for interaction g(jl) of each j th

electron with Ith electron (each couple taken twice in X). In (2) the operators
@ and B are defined as matrices:

0 o’ I 0
&= = . 3
(%, o) = 1) ®)
where I is the unit 2 x 2 matrix and e?represents three Pauli matrices:
01 0 —i 1 0
P — P o= P — . 4
i=fi o =l o) .

The potential function V(r;) defines electrical potential on the nucleus. For
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description of the atom, one-electron functions are constructed:

U em  Pulry
1pnkm(rf) - ”_j (iX—k,m an(rf)> (5)

which are eigenfunctions of operators J2, §2 and J, and contain radial functions
Qx> Py and angular functions y, ,,. These functions are defined as:
Y. Clzj;m—oa,0) Y 793 ©)
=14
where C(I3j;m— 0, 6) denotes a Clebsch-Gordon coefficient for vector addition

of two angular momenta, ¥;"~ is a spherical harmonic and ¢{ is a spin eigenfunc-
tion, represented by column matrices for two possible values of ¢ (+ 3 or —1):

af) ) o

Function y, ,, contains the relativistic quantum numbers k and a (a is sign of
spin quantum number) instead of usual quantum numbers /,j present in Clebsch-
Gordon coefficients:

[N NOE

1
k=—(+3%a az{tl or where j=I+1a. ®)

The magnetic quantum number m can have all 2j + 1 values between j,j—1, ...
—(j—1), —j. The main quantum number # is the same in both relativistic or non-
relativistic theory.

For definition of one-electron function in the Dirac equation, four quantum
numbers are used (n, j, m, a) or (n, k, m, a), related by (8), where only three quantum
numbers (n, I, m) are used in non-relativistic Hartree-Fock method. Electron
or] with state 4 defined by four quantum numbers (n,,j,, m,, a Jor{ng, k,my, ay,)
is further abreviated by index A only, denoting all four quantum numbers

Using the one-electron function (5) and Pauli exclusion principle the deter-
minantial Hartree-Fock functions are constructed (as linear combination of
products of functions (5)):

%(A ) . 1(Aj) UH(ANj
p=(N)* yi(A') i) Y ©)

PrAD) o A - (A

where the list of (4", ..., 4, ..., AV) defines the electron configuration of the atom.
For function ¢ the total energy E of the atom in the given electron configuration
can be calculated by a usual quantum mechanical relation:

E= [¢*Hy, ¢pdr/ | p*$pdr = ;I(A) + %AZB [/(A, B)—K(A, B)] (10)

In (10) the matrix elements I(A) (Slater direct integrals) are obtained by multi-
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plication:
I(A)=<Alhs|AD> = [pihpadr (11)

which, after integration leads directly to form:

1(A)=c}:{PA[d£A —%Q,,;k(c—%)PA

12
Py L lap v L "
dr P A ¢ c 2

—Oa

far

The matrix elements of exchange interactions J(A, B) and K(A, B) in (10) have
the form: '

J(A,B)=<A,Blg|A, B} = [[wi(D)wE(2) g(1,2) wa(1) wp(2) drd1,
K(A,B)=<A,Blg|B, A) = [[vi(1) w§(2) 9(1,2) wu(1) Ya(2) dr,dT,

The exchange interaction function g of electron 1 (with 4 set) and 2 (with B set
of quantum numbers) which is part of Hamiltonian (1), is usually decomposed

(13)

into the electric term (~—) , most significant in calculations, and into the Breit
T12
term B(1, 2) about a thousand times less significant:

g(1,2)= % +B(1,2) (14)

The Breit term is usually decomposed into two terms — the magnetic term g™(1, 2)
and retardation term g®(1, 2) (where g™ = 10g%).

B(1,2)= {g"(1, 2)} + {g"(L, 2)}
. () a(2) 1 a()&(2) 1
2 1y, 2
The matrix elements J(A, B) and K(A, B) obtained from (10) were simplified by
Grant [10] using Racah algebra, and in [10, 22, 18] solved separately for all

three interactions. Finally, the expression for total energy E of the atom con-
sisting of closed shells of electrons was found:

. E=E°+E°+EVM+ER (16)
In (16) terms are defined as:

H(F, » &(z)fl,z]} =

3
Fi2

T2

E° =Y g,I(A)=single particle contribution (17)
A

and EC = contribution of the Coulomb repulsion, EM= magnetic energy,
ER = retardation energy. The explicit form of E® is:

1 q .
E€= 2{7 4a@a— D) FUA A — 4+ 3 4aT), FelA, A)}
A v7o (18)

1 1
43 T aada|FRA B~ X5 Ty, Gl B

2 B#A
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with coefficients I, ,;, defined by Grant [10] and with exact validity only for
closed shells. Here g, and gy are the numbers of electrons on closed shells A and B
and F{ and GY are Slater integrals for Coulomb interaction:

@ 1
Ri(A,B,C, D)= | [PyPg+Q,0s] - YC, D;rydr (19)
and 0
G{(A,B)=R}(A,B, A, B)

(20)
FU(A, B)=R{(A, A, B, B).

The potential function Y2(C, D; r) is defined in Eq. (26). Magnetic and retardation
energy EM and ER, derived from the term of Breit interaction (15), are also defined
in [12] and [18]; in form they are rather similar to (18), with more complicated
coefficients. Because they are generally small, we neglected them in our calcu-
lations. They can be introduced as perturbation correction in more exact approxi-
mation. From Eq. (18), using the variation principle which minimizes the total
energy E, the final set of relativistic Egs. (21) and (22) was found in [10], defining
the orthonormal radial functions P,(#), Q.(r} for each electron with the set of
quantum numbers A (i.e. with n,, ky, a4):

P, k

+ 2P, +|2c+ —1—YE(A;r)— RIS TN
dr r rc c
. 21
=Wy(A;n)+ Z — eap0(ja»jB)0(as, ap)0g ,
B#A €
aQa ki I R
dr -V_QA_ . TY (A;1)—épn| Pa
22)

1 .
=~ Wp(A;r)— Z —85p9(ja, J8)9(as, ap) Py .
B#A €

The potential functions are defined:

1
YEA; ) =1V () - ZA: aaYS(A, Asr) + 27 dal’y0j, YA, AsT) (23)

1 1

WelA;r)=—— ) Y = asYe(A, B; ) Py(T, ;. (24)
rC pEa Sy 2
1 1 )

Wo(Asr)= — e Z 27‘13 Y&(A, B; 1) QB(T)FjAva (25)
CBzA 'y

. . . . VA .
Here V(r) is the nuclear potential, which we approximate as — (point nucleus).
r

The basic potential functions Y(A, B; r) are defined as the integral:

Ye(A,Bir)=r Ofo Uy(r, S) [PA(S)Pg(S) + Qa(S)Qs(S)] dS (26)
0
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where
U,r,)=r/s"** if r<S§
=S/ttt if r>S.

We used the original Eq.(18),(21) and (22) derived by Grant [10] for atoms with
closed shells also for calculation of atoms with nonclosed shells. As correction
here for open shells, we generally used the actual number of electrons present
in the open shell as g, or gg; for closed shells, g, in Egs. (18), (23), (24), (25) is
equal to (2j, + 1) (number of electron in full shell A) as derived by Grant [10].
This is the correction used by Hartree [23] (pgs. 110, 112) in the non-relativistic
case. For both closed and open shells we used common coefficients I, ,;., which
are exactly valid only for closed shells. However, in each atom only a few (1 or 2)
open shells of valence electrons were present which were calculated with non-exact
I;,.;, coefficients and a great majority of inner shells were calculated correctly.
Therefore, we hope, our results are not substantially affected by this approximation.

Slater [24] suggested another approximative method for calculating the
average energy (weighted mean energy| of an atom containing few open shells
in NRHF calculations. This method again uses the coefficients (of I}, ,;, type)
which are exactly valid only for closed shells. In the relativistic cases Slater’s
method leads to replacing coefficient g, I, ,;, in the second term of equation (18)
and in the third term of equation (23):

replaced by

2ja+1)
qAFjAvjA —————(qa— I)A—’F

2jA JavIa
with g, = number of electrons in open shell 4. Such replacement slightly changes
wave functions and total energy EC, which is then called average energy Esv.
This approach was recently used by Mann and Waber [19] and we also cal-
culated average energies ESy using replacement (27) in (18).

For shells with (nlj) quantum numbers, to describe our results we use the
notation: 1,2, 3 ... for main quantum number n, the usual letter s,p,d, f,g ...,
for 1=0,1,2,3,4etc... and numbers 1/2, 3/2, 5/2,7/2,9/2 etcfor j=1+3or [ — 3.
For brevity in some tables we use the notation n,l,a when n,[ is as described
above and a = signum of spin number which defines j=1+3a (e.g. 5f5,=5f—,
5f72=>35f+, see also Table 1).

(27)

2.2. Computer Program and Calculations

In our calculations we use the computer program of Coulthard [25] which
was adapted for calculation of large atoms. This program which was originally
written for point nucleus in FORTRAN IV language for IBM computer 7044,

maximally allowed calculations of atoms with 24 shells (Rn) and used 180 tabu-
z

e .. . .
370 is in Bohr umts) going up
from t= —3/16 with step 1/16. We extend this program to a maximum of 46
shells, using 90 tabulation points with step 1/8 going up from t= — 3/8 (further
referred to as 46 x 90 program). This allowed us to calculate all heavy atoms
up to Z =130 almost using the full memory of IBM—7044. We adjusted the

lation points for variable t (Where radius r=
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program further for FORTRAN V language and used the UNIVAC 1108 com-
puter of the Université de Paris XI, Orsay. This computer has a substantially
bigger memory than IBM-7044, so we also used here the 180 point tabulation
set for atoms with up to 46 shells and original step 1/16 of ¢ starting from ¢t = — 3/16
(further referred to as 46 x 180 program). The results of calculations with 46 x 90
program are practically identical to those with 46 x 180 program, as seen in
Table 1 for the case of Hg. We also corrected some coefficients I, ,;, in the origi-
nal Coulthard program which were incorrectly derived in [10] and were later
corrected [11]. For acceleration of all calculations we used the previously cal-
culated wave function of neighbour elements of close configuration as starting
values for calculation of the next (relative) configuration. In Table 1 Coulthard
results [14] are presented and compared with ours using corrected coefficients
T;, ,;,- The differences are visible in the 5 f'shell, due to the corrected coefficients
in our program (see 46 x 180 program). From Table 1 we see that the results
of both our programs are the same for eigenvalues and differ only slightly in total
energy. The results in Table 1 are compared with Mann and Johnson [18] for
Hg (calculated by SCF Dirac-Fock program with finite nucleus approximation)
and with [27] experimental values. One can see that our eigenvalues are almost
the same as in [18], with the exclusion of 1s+ electron, wich is closer tot the
experimental value in the case of finite nucleus approximation [18]. This change
also diminishes somewhat the total energy of [18]. For more heavy elements
this effect became more important — e.g. for 114 and 126 elements in DFS ap-
proximation it was found that the eigenvalue of 1s+ electron is changed ~ 1%
and 3.5% respectively [26], with practically no effect on shells with n > 2. We also
calculated some configurations of 126 element with our program and compared
our eigenvalues with eigenvalues of Mann and Waber [19] calculated with finite
nuclear approximation for 126 element in (118) 526 f28s*8p? configuration.
The results were similar to those in [26]; our eigenvalues for 1s+ and 2s+ of
126 were about 3.5% higher than the more correct values of Mann and Waber.
All of our other eigenvalues were close to the eigenvalues of [19].

For this reason we limited our calculations (using point nucleus approxi-
mation) maximally to 120 element, where the difference of our 1s+ and 2s+
value will be ~ 1.5% of values calculated as in [19].

However, a majority of chemical and spectroscopic results can be obtained
from ionization potentials of outer shells, which our program calculates cor-
rectly up to Z =120.

Finally, for simplification in our program, we neglect all magnetic and retar-
dation terms in Eq. (16). These terms are relatively small, but absolutely not
negligible as shown in [19] and [18]. Generally, they shift all calculated total
energies of all close configurations in one way by some practically constant
value. The magnetic terms substract about 0.1% from calculated total energy
and the retardation terms add about 0.01% to this energy. These terms can be
calculated in good approximation as perturbation of total energy, using the wave
functions calculated only from Coulomb terms. We believe that the conclusions
concerning ionization potentials, of transition energy between energy levels
(X-rays) and of atomic or ionic radii, are not substantially affected by neglecting
magnetic and retardation terms.
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3. Results

In our self-consistent calculations we calculate the set of eigenvalues g4, for
each element by solving Eq. (21) and (22) for each subshell (in which we omit
all nondiagonal terms containing &,, as negligible) with error 10~7 allowed for
its integration procedure. We also obtained the sets of potentials Y*(A;r) and
radial wave functions P,, Q, with error 1077 allowed for their iteration or inte-
gration procedures, respectively.

After obtaining the convergency of these values, we usually formed the total
energies as follows:

TE = TOTAL ENERGY = E° + E€ as defined in (17) and (18).

AE = AVERAGE ENERGY = E° + ESy, with E° defined in (17) and (18)
but using replacement (27) in Eq. (18) for ESy calculations.

Both TE and AE values used wave functions P,, Q, which were obtained
without replacement (27) in Eq. (23) but used the actual number of electrons
present, q,, for each open shell. This we will call wave functions ,,Hartree type”.
Results for a few atoms and ions with these functions are presented in the first
three columns of Table 2.

In our computer program we also have other possible variants for calculations
of wave functions P,, Q, — using (21) and (22) (omitting terms containing &,p)
where the replacement of (27) is used in Eq. (23) during self-consistent calculations.
We call the wave functions obtained in this way “Slater type”. Using this “Slater
type” wave function, we again calculated total energies:

TEg = TOTAL ENERGY (SLATER) = E° + E as described in (17) and (18).

AEg = AVERAGE ENERGY (SLATER) = E®+ E$y with replacement (27)
in (18). ,

The results from “Slater type” wave functions are presented in the last three
columns of Table 2. In comparison to results in Table 2 for TE, AE or TEg, AEg,
one can see that both types of wave functions give absolutely somewhat different
total energies and average energies — with AE, AEg lying lower than TE, TEg.
However, the shift from TE, TEg to AE, AE (expressed as their difference, A)
is the same, within the errors of calculations, for both wave functions (either
“Slater” or “Hartree” type). In most of our results we use the “Hartree type”
wave functions, with TE and AE. To determine ground state it is important to
use the correct energetic difference between the close-lying configurations — not
the absolute value of TE or AE (which is affected much more by point nucleus
approximation than by use of the “Slater type” wave function, see e.g. cases Sm,
Yb in Table 3). In Table 3 we compare our results with other available results,
throughout the periodic system. Our results (with 46 x 90 program, using point
nucleus approximation) are in good accord with the results of Mann and Johnson
[18] (using finite nucleus approximation). Results up to Ne are identical with [18],
then start to differ slightly up to Kr, with a growing difference up to 120 element,
due to our point nucleus approximation (less exact than [18]).

On the other hand, the results of [17] (which should use the same formulae
as we do, i.e. also with point nucleus approximation) differ from ours substantially
more than do the results of [18]. They are considerably higher than our results
(giving smaller —E,,,) or those of [18] which are certainly more correct. In the
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case of Rn [17] gives the total energy 48.46 Ry higher than in [ 18] but [17] should
yield only lower value because of point nucleus approximation (e.g. — 18.126 Ry
lower, as in our results in comparison to [18]). This discrepancy probably indi-
cates that the definition of total energy in [17] differs from the definition derived
by Grant [10] used in [18] and in our program.

Further results presented in Table 3 for comparison were obtained by DFS
and point nucleus approximation using the full Slater exchange potential with
factor 1 (see [5]) or using the Slater exchange potential with factor 2/3 (see [7])
or for some heavy atoms, the. DFS results are compared with finite nucleus and
full Slater potential (see [8]) or 2/3 of Slater potential (see [9]). The DFS results
with 2/3 Slater potential and point nucleus are very close to ours [7]. The results
for finite nucleus and heavy atoms (118, 120) in[8, 9] are higher than correct values
of [18], when our results in this region are lower than [18]. The results of NRHF
[2] for all more heavy atoms are generally incorrect; they are not too far from
our values (and from experimental values, see last columns of Table 3) for elements
below Ar, but for elements with Z > 20 they differ substantially with unrealistic
differences for all heavy elements above Z > 50. In Table 4 (for all elements from
H to Ca systematically) experimental values of total energies are presented —
calculated as the sum of ionization potentials of all electrons from each element —
which is known [28] up to Ca (Z = 20). The date [28] are given in €V. They were
recalculated to AU with constant: 1AU=2Ry=27.196eV. Experimental
total energies are compared in Table 4 with our TE and AE. The agreement of
calculated values with experimental ones is good (when AE are somewhat closer
than TE to experimental values). The main results of this work are collected in

Table 4. Comparison of calculated and experimental total energies

Element : VA Experimental [28] E. .(AU)
This work This work
~TE —AE

H 1 0.5000 0.500007 0.500007
He 2 2.9049 2.8618 2.8618
Li 3 7.4824 7.4335 7.4335
Be 4 14.6764 14.5759 14.5759
B 5 24.6715 24.5366 24.5366
C 6 37.8762 37.6574 37.6574
N 7 54.6414 54.3243 54.3316
O 8 75.1506 74.8326 74.8439
F 9 99.8600 99.5119 99.5215
Ne 10 129.1200 128.6920 128.6920
Na 11 162.5160 162.0783 162.0783
Mg 12 200.4177 199.9353 199.9353
Al 13 242.8432 2423315 2423315
Si 14 290.0247 289.4503 289.4503
P 15 342.1316 341.4945 341.4993
S 16 398.9083 398.6052 3426125
Cl 17 461.6284 460.9471 460.9533
Ar 18 529.3982 528.6854 528.6854
K 19 602.2928 601.5280 601.5280
Ca 20 680.4720 679.7128 679.7128
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Table 5: the calculated TE and AE for all elements up to Z =120. Each element
was calculated in two or more electron configurations. In Table 5 when only one
configuration is presented (case Li, Be, Na, K), the second calculated configura-
tion was not converging.

Table 5 contains all chemical periods from H up to Z = 120; lanthanides and
actinides are separated from other elements in Tables 6, 7. Symbol and Z in the
first two columns are self-explanatory. Electron structure in the third column of
Table 5 is denoted by n, [, a symbols for the last electrons which follow the electron
configuration of a core with all closed shells. As cores the symbols (Ne), (Ar),
(K1), (Xe), (Rn), (118) are used for the configuration of ground states of elements
Ne, Ar, Kr, Xe, Rn and 118. When symbols (3d*°), (4d*%), (4 f'%), (5d4'9), (51'%)
and (64'°) are used, they correspond to closed shell configurations of (Ar) 3d* 3d%,
(Kr) 4d* 445, (Xe) 4/C 418, (Xe) 4% 48 5d* 5d%, (Rn) 55 5f% and
(Rn) 5% 518 6d* 6d5, respectively.

In columns 4 and 5 our calculated values in atomic units taken with — sign
are presented. The value with the lowest energy among them is underlined,
corresponding to our calculated ground states. In the last column experimentally
known ground states spectroscopically determined up to Z =96 are presented —
according to [28], by non-relativistic symbols similar to relativistic ones in
column 3. Besides the cores of noble gases, here we use (Zn), (Ce) and (Hg), each
corresponding to the electron ground states of Zn, Cd or Hg respectively for
cores.

In the last column, when available, the ground state determined by NRHF
calculations according to [2] is marked by the symbol ¢). Also, when available,
the gound state determined by DFS according to [9] is marked by the symbol
d). In the case of lanthanides (Table 6) full TE values calculated in [2] are presen-
ted. In the case of actinides (Table 7) our results are compared with full NRHF
data from [2] and DFS data from [9] and are discussed in the following section.

4. Discussion

Table 5 presents our results for total energies (— TE or — AU) of all elements
in the periodic system up to Z =120 (exclusive of 4 f and 5 f elements) in com-
parison with spectroscopically determined ground states of [28]. It is visible
that our calculated ground states as TE or AE (under-lined in Table 5) show the
same electron structure. One exclusion is the case of Mo, where TE shows (Kr)
44* 553 structure and AE (Kr) 4d* 44 5s% structure. However, energetically,
they are within the limits of calculating errors and are, therefore, equally pos-
sible. The errors of calculation, taken as the difference between two calculations
repeated in sequence (using the first results as the starting point for the second
calculation) is usually + 0.001 — 0.002 AU. In comparison with experimentally
determined ground states, our results in Table 5 reproduce them completely,
with the following few exclusions: Cr, Cu, Nb, Tc, Pd. It is necessary to bear in
mind that experimentally the ground state is determined as the electron structure
giving the lowest lying multiplet. Our program is able to calculate only a mean
energetic level of each configuration (AE), ie., the barycentrum of all multiplets
of the determined ground state configuration. If two configurations exist with a
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close barycentrum of their multiplets (e.g. a difference of only 0.01 AU = 0.27¢V)
it is possible that the lowest lying multiplet is in the configuration with the
higher lying barycentrum. Furthermore, our calculations for open shells are in
error, using coefficients I';, ,; (valid exactly only for closed shells). The magnitude
of error introduced by such approximation is visible if we compare our TE with
AE, both of which are calculated with different coefficients in the terms con-
taining I, ,; . In the case of Cr, Cu, Nb, Tc and Pd, the maximal difference be-
tween TE and AE is 0.011 AU — so here we could accept + 0.013 AU as a reason-
ably estimated error in total energy (covering incorrect I,,; coefficients and
including calculation errors). From this point of view the experimental and
theoretical ground states of Cu, Nb, Tc and Pd which differ less than 0.026 AU
are still within the + 0.013 AU error limits. Only the case of Cr clearly indicates
some discrepancy between experiment and theory. On the other hand, in almost
all cases in Table 5 it is visible that the use of incorrect I},,;. coefficients in the
last few open shells is not very critical because ground states here were correctly
calculated. The ground state position found by NRH in [2], available for most
of the periodic system (denoted by ¢)) in Table 5, are in accord with our DHF
values, including the cases of Cr, Cu, Nb, Tc, Pd — however, they differ in the
cases of Re, Os, Ir, 110 and 111 element. The positions of ground states found
by DFS calculations [9] (using finite nucleus approximation denoted by d)) in
Table 5 for Ir, Pt, Au and 105-120 element agree exactly with ours. For 104 ele-
ment DFS values [9] present (5 f'4) 6d% 7s%, as the ground state configuration.
However, in [9] (5 f!4) 64~ 7s% 7pl state was not calculated by the DFS method
which we found to be the ground state. The same ground state as ours was reported
by Mann [29].

In contrast to the good accord of calculated ground state with experimental
ones in Table 5, the case of lanthanides and actinides in Tables 6 and 7 presents
systematical discrepancies. The lowest lying states calculated as DHF (this
work), DFS (9), NRH (2) and NRHF (2) in Tables 6 and 7 are denoted by *.
From the comparison of our — TE and — AU values in the lanthanides series
with spectroscopic data [28, 30], our results of — AE show one 5d% electron
present in all lanthanides. Our results of — TE indicate the same, with the ex-
clusion of Sm®2, where no 5d. is present in the ground state. If we accept the
value +0.02 AU (i.e., maximal allowed difference between two states 0.04 AU)
as a reasonably estimated error of — AE or — TE — due to computing errors
and incorrect use of I, ;. also for open shells —- we could explain the discrepancy
between theory and experiment in the case of Pm and Sm and, perhaps, for Nd
and Er. The discrepancies are to great in the cases of Tb, Dy, Ho and especially,
of Eu. It is very difficult to explain them in the same way; their calculated ground
states, each containing one 5d* electron are 0.05 to 0.085 AU lower than states
without 54 electrons.

In the lanthanide series the positions of ground states from NRH calculations
[2] are in exact accord with ours. On the other hand the NRHF calculations
[2] are apparently giving wrong results (see Table 6 and Table 7) they are system-
atically indicating the same structure in both lanthanides and actinides: no
5dL electrons in any lanthanide below Ce and no 6d' electrons below Th, with
similar structure of Ce and Th, each containing one 5d* or 6d. electron respec-
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tively. Systematic DFS results for lanthanides are not available. Our results in
the actinide series for both — TE or — AE values are in accord with experimen-
taly determined ground state positions for Ac, Th, U, Np and Cm. For Pa and Pu
our calculated ground states are 0.03 AU or 0.038 AU lower than those experi-
mentally determined (i.e. still within the estimated 0.04 AU difference, as menti-
oned in the lanthanide case). In the case of Am (also of Eu) we have a strong
discrepancy with experimental results (we found 5d* present in the ground state).
In the region from Cf to No our results indicate the absence of 6d electrons and
again the presence of one 64" electron in Lr. DFS results, calculated for acti-
nides in [9], agree with experimental results in the case of Ac, Th, Pa, U, Pu,
Am and disagree for Np and Cm. DFS calculations indicate the absence of 6d
electrons in all actinides, starting from Np. NRH calculations are in the best
accord with experiments agreeing in the cases of Ac, Th, Pa, U, Np, Pu and Am
and disagreeing for Cm. They indicate the absence of 6d electrons in the actinide
series starting from Pu.

Generally, the disagreement in the lanthanides and some actinides between
calculated and spectroscopically determined ground states known to us from
1969 [16] is disturbing. We realize that it is very important to remove these
discrepancies. The most simple way to do it is to find the exact position of both
barycentrums in the two neighbor configurations (of experimental ground
state and DHF ground state). This can be done by finding its experimental average
energies — as the weighted average energetic position of all their multiplets (using
the present assignment of spectral lines). This could lead to a natural explanation
of discrepancies — without necessitating the reclassification of spectral lines.
Another way is to calculate exactly the ground state configuration terms, using
the exact complicated coefficients for open shells, in place of I7,,;,. This method
should give final results, and could, eventually, suggest some need for the change
in the ground state assignment of some lanthanides and actinides. However, it
needs substantial change in our program and extensive computer time. From
this point of view, the present predictions of chemistry of superheavy elements
[9, 29], based on DFS [9] and DHF [19] calculations (using calculations of
barycentrum of ground state only) are only preliminary — as is natural for the first
step in the unknown region. We believe that a thorough investigation of atoms and
ions in the known region of the periodic system is crucial in order to predict the
chemistry of some superheavy elements by the DHF or DFS methods.
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continuous support of this work.
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